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Computational Methods

* Molecular Mechanics

e Semi-Empirical

e Abinitio

e Density Function Theory (DFT)
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Results

e Molecular geometry

 Energies of molecules and transition states
e Reactivity (electrophilicity/nucleophilicity)
e Spectra (UV, IR, NMR)
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Ongoing Projects

e Cobaltsalen catalyzed oxidation of lignin
models

* Pyrolysis reactions
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Co(salen)/0O, oxidation of lignin
and lignin models

Collaboration with Joe Bozell,
University of Tennessee
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Co(salen)/O, oxidation of lignin and lignin models

Oxygen activation with a Co catalyst converts models to benzoquinones

Co(salen) Co(salen)/superoxo

MMBQ: 12-30%

Co(salen), O,

1
OMe R3 NIR
OH \[ >—R2 or
N

CedenoD, Bozell JJ Catalytic oxidation of para-s ubstituted phenols by a cobalt-Schiff base complex/02 system inthe presence ofan external axial ligand or a sterically hindered
aliphatic base. Tetrahedron Lett., 2012, in press.




Oxidation mechanism

MeO OMe
O



Experimental Results

Ligand DMBQ yield pKa

imidazole a)

1-methyl imidazole b)

2-methyl imidazole c)

1-2 dimethtyl imidazole d)

2-4 dimethyl imidazole e)



What goes around comes aroun
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Cobalt—Schiff Base Complex Catalyzed Oxidation of
Para-Substituted Phenolics. Preparation of Benzoquinones
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Para-substituted phenolics, serving as models for lignin (a renewable source of carbon), are oxidized
to the corresponding benzoquinone with oxygen in the presence of catalytic amounts of Co—Schifl’
base complexes. The reaction products cbserved depend on the structure of the catalyst. The
S-coordinate catalysts (pyridine)[bis(salicylidenejethylenediamine Jeobalt [(pyr)Colsalen)] and [bis-
[{salicylideneamino)ethyllaminejeobalt [Co{N-Me salpr)] convert syringyl alcohol (3,5-dimethoxy-
4-hydroxybenzyl aleohol) to 2, 6-dimethoxybenzoquinene in high yield. In contrast, syringaldehyde
(3,5-dimethoxy-4-hydroxybenzaldehyde) is unreactive toward these catalysts. However, the
4-coordinate Colsalen) converts syringaldehyde to 2,6-dimethoxybenzogquinone in 72% isolated yield,
Phenols bearing a single methoxy group on the ring are unreactive toward any catalyst in MaOH.
However, vanillyl alcohol (3-methoxy-4-hydroxybenzyl aleohol) is converted to 2-methoxybenzo-
quinone with ColN-Me salpr) and oxygen in 43% yield in CH:Cly, and 58% yield in CHsCl; in the
presence of 1% CuCl,. The success of the oxidations appears to be related to the ease of removal
of the phenolic hydrogen by the Co/0; complex. Competitive deactivation of the catalyst occurs
with substrates of lower reactivity.

™ T, Elder and J1.1. Boxell: MO Calcalstions on Phenolic Subsirates

Holzforschung
400 {1905) 2430

Cobalt-Schiff Base Complex Catalyzed Oxidation
of para-Substituted Phenolics. Molecular Orbital
Calculations on Phenolic Substrates
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Cosalen) Results from experimentsl oxidation reactions of lgni mpounds using Cofsalen) have
Ligain model compounds i itution. rinl:y] cnmluuﬁb ase unifarmly
Oxidattn . mnr = ta axidation than the anslogous gusaiacyl and p compounds. The eusrent work
Molecular orbital calculstions o000 o the completion of molscular orbital caleulations far the Tignin model substrates, in an attempe
ta raticmalize the observed differences in reactiving. The esergies of the highest occupied mobecular
charge on the phenalic oxygen, and frontier molecular orbital coefficients on the
& tently greates for the syringyl compounds, In addition, syringyl compounds

have bower bond dissociation energies for hydrogen abstraction.




Methods

eoesYastectanse
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The mysterious world of ligand substitution.

To date, Gaussian09 has been used with UB3LYP/6- Cg\f\cm
31G(d) calculations, with, NBO, full optimizations and
frequency calculations
Axial ligands that have been examined are
— Imidazole
— 1-methyl imidazole
— 2-methyl imidazole
— 1-2 dimethyl imidazole
— 2-4 dimethyl imidazole

All calculations were done with charge=0 and
multiplicity=2 (1 unpaired electron)




Results

 Before going too far we
compared current
results to the literature.



http://www.uky.edu/~holler/periodic/co/el_text8.html

\ paired electron occupies the d.? orbital. Recently, McGarvey
has published? detailed equations for the interpretation of the
EPR parameters of a low-spin cobalt(IT) complex having either
40kKp 400 a d,, or d.: ground state, taking into account the fact that the
d;2 and d,2 ,z orbitals might be mixed by low-symmetry ele-
xy _\_ . ments of the ligand field. Malatesta and McGarvey® found
xy .Y
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Figure 3. Quantitative molecular orbital diagram for the Co(acacen)-
(pyridine) model in the doublet and guartet states.




Results

Co(salen) the orbital population is consistent with the
literature

— The singly occupied molecular orbital is the dyz
— The dxy is unoccupied and the highest energy
Co(salen)-O,-imidazole is consistent with the literature

— The oxygen p-orbital is the singly occupied molecuar
orbital.

— All axial ligands give similar results except the 2,4 dimethyl
imidazole, in which there seem to be mixed orbitals

These results are in accord with the spin density
calculations



Catalyst geometry

e The geometry of the
catalyst changes with
substitution

e The Co(salen) with no
ligands is quite planar,
while the addition of
the axial ligand and
oxygen distorts the
structure out of
planarity




Catalyst Geometry
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Electronic Results -

Co charge
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Geometric-Electronic Relationships

e These were done to
evaluate changes in

electronics as a function
of geometry




Co charge as a function of Co-N bond length
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Spin density at oxygen as a function of ligand angle
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Terminal oxygen spin density as a function of Co-
axial ligand bond length
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Spin density on terminal oxygen as a function of Co charge

0.775
0.77 $

0.765 wrosm

0.76 /
0.755 /

0.75
0.745 /

0.74 /49'

0.735 ,;/

0.73

0.725 | [ I I I I I ]
0.945 0.95 0955 0.96 0.965 097 0.975 0.98 0.985

charge on Co

density on terminal oxygen

spin




Geometry/electronics vs Yield

Ligand DMBQ yield pKa

imidazole b)

1-methyl imidazole c)

2-methyl imidazole d)

1-2 dimethtyl imidazole e)

2-4 dimethyl imidazole f)

6.5 7 7.5 8 8.5
pKa (axial ligand)



DMBQ yield
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What have we learned?

Our results are consistent with the literature in
terms of orbital occupancy and ordering

Axial substitution markedly changes the
geometry of the salen ligand
— Geometry also changes with ligand

There are good relationships between geometry
and electronics

The relationships between geometry, electronics,
energetics and yield are not as good

This may mean that yield is controlled by more
than one factor



Pyrolysis Reactions



Introduction

Experimental Work on mechanisms

Klein and Virk. 1983. Model pathways in lighin
thermolysis. 1. Phenethyl phenyl ether. Ind. Eng. Chem.
Fundam. 22:33-45

Brezny et al. 1983, 1984. Low temperature thermolysis of
lignins. | and Il. Holzforschung 37:199-204, 38:19-24.

Evans et al. 1986. Direct mass spectrometric studies on
the pyrolysis of carbonaceous fuels. lll. Primary pyrolysis
of lignin. J. Anal. Appl. Pyrolysis 9:207-236.

Britt and co-workers

— 2000. Flash vacuum pyrolysis of methoxy-substituted lignin
model compounds. J. Org. Chem. 65:1376-1389

— 2007. Oxygen substituent effects in the pyrolysis of phenethyl
phenyl ethers. Energy and Fuels 21:3102-3108



Introduction
Computational Work

Beste, A., Buchanan, A.C. Il (2009) Computational study of bond

dissociation enthalpies for lignin model compounds. Substituent
effect in phenyethyl phenyl ethers. J. Org. Chem. 74:2837-2841.

Beste, A., Buchanan, A.C. 11l (2011) Computational study of bond

dissociation enthalpies for substituted B-0-4 lignin model
compounds. ChemPhysChem 12:3556-3565

Younker, J.M., Beste, A., Buchanan, A.C. lll. (2012)
Computational study of bond dissociation enthalpies for lignin
model compounds: B-5 arylcoumaran. Chem. Phys. Lett.

545:100-106

Wang, H., Zhao, Y., Wang, C., Fu, Y., Guo, Q. (2009) Theoretical
study on the pyrolysis process of lignin dimer model compounds.
Acta Chimi. Sin. 67:893-900.



Introduction

Computational Work

e Beste, A., Buchanan, A.C.
111 (2009) Computational
study of bond dissociation
enthalpies for lignin
model compounds.
Substituent effect in
phenyethyl phenyl ethers.
J. Org. Chem. 74:2837—-
2841.

— MO06-2X/mixed basis set
e 6-31G(d), all atoms

e 6-311++G(d,p) , atoms with
upaired electron




Methods

e Based on the results of Beste and Buchanan (2009) on
phenethyl phenyl ethers, the bond dissociation enthalpy
of dilignols was evaluated




Methods-Computational Methods

Composite methods for accurate thermochemistry

G3MP2

— Curtiss et al. 1999. J. Chem. Phys. 110:4703-4709.
e Optimizations at HF/6-31G(d) and MP2/6-31G(d)
 Single point MP2/G3large, MP4/6-31G(d), QCISD(T)/6-31G(d)

CBS-4m

— Montgomery et al. 2000. J. Chem. Phys. 112:6532-6542.
e Optimization and frequency HF/3-21G(d)
* Single point MP4/6-31G, MP2/6-31+G(d,p), HF/CBSB1

Gaussian09
SGI Altix Cluster-Alabama Supercomputer Authority



Calibration

e Results for anisole and ppe from the literature
were compared with G3MP2 and CBS-4m

— Energetics were consistent
— Considerable time advantage with CBS-4m



Results
CBS-4m

bond dissociation

enthalpy

The differences between
B-O and a-f are smaller
than for the PPEs, perhaps
indicatingless selectivity.

compound

temperature

guaiacyl

syringyl

p-coumaryl

298 K

298 K

800 K

73.6

74.6




What Have We Learned?

e Compound methods (at least some of them)
are feasible for models of reasonable size

e Compound methods are fairly consistent with
respect to results

 The difference in BDE between B-O and a-f3
cleavage mechanisms is lower for dilignols
than for PPE models

— This may mean the reactions are less selective



BDEs of
dibenzodioxocin

Dibenzodioxocin structures
recently discovered by
Brunow and co-workers

BDEs within the group

Conformational analysis of
open ring structures

— 500 iteration MC search with
PM3 optimization

MO06-2X/6-31+G(d), ultrafine grid,
optimizations on lowest 10
conformers
MO06-2X/6-311++G(d,p) single
point, frequency, ultrafine grid,
on lowest energy conformer




Coming attractions (?)

* Interactions of ionic liquids with cell wall
constituents




Modified Lignins
(Grabber et al. Biomacromolecules 9:2510)




Questions
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