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Computational Methods 

• Molecular Mechanics 
• Semi-Empirical 
• Ab initio 
• Density Function Theory (DFT) 
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Results 

• Molecular geometry 
• Energies of molecules and transition states 
• Reactivity (electrophilicity/nucleophilicity) 
• Spectra (UV, IR, NMR) 
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Ongoing Projects 

• Cobalt salen catalyzed oxidation of lignin 
models 

• Pyrolysis reactions 
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Products from Renewable Carbon 



Co(salen)/O2 oxidation of lignin 
and lignin models 

Collaboration with Joe Bozell, 
University of Tennessee 

October 30-November 2, 2012 Frontiers in Biorefining, Chemicals and 
Products from Renewable Carbon 



Co(salen)/O2 oxidation of lignin and lignin models 

 Oxygen activation with a Co catalyst converts models to benzoquinones 
 
 
 
 

 S models work well, but G models oxidize in lower yield 
 
 
 

 
 The choice of ligand is important to the reaction  

 
 
 

Cedeno D, Bozell JJ Catalytic oxidation of para-substituted phenols by a  cobalt-Schiff base complex/O2 system in the presence of an external axial ligand or a s terically hindered 
a l iphatic base. Tetrahedron Lett., 2012, in press. 



Oxidation mechanism 



Experimental Results 
Ligand DMBQ yield pKa 

imidazole a) 5 7 

1-methyl imidazole b) 29 7.33 

2-methyl imidazole c) 67 7.85 

1-2 dimethtyl imidazole d) 72 8 

2-4 dimethyl imidazole e) 71 8.38 



What goes around comes around 



Methods 

• To date, Gaussian09 has been used with UB3LYP/6-
31G(d) calculations, with, NBO, full optimizations and 
frequency calculations 

• Axial ligands that have been examined are 
– Imidazole 
– 1-methyl imidazole 
– 2-methyl imidazole 
– 1-2 dimethyl imidazole 
– 2-4 dimethyl imidazole 

• All calculations were done with charge=0 and 
multiplicity=2 (1 unpaired electron) 
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Results 
 

• Before going too far we 
compared current 
results to the literature. 

http://www.uky.edu/~holler/periodic/co/el_text8.html




Results 
• Co(salen) the orbital population is consistent with the 

literature 
– The singly occupied molecular orbital is the dyz 
– The dxy is unoccupied and the highest energy 

• Co(salen)-O2-imidazole is consistent with the literature 
– The oxygen p-orbital is the singly occupied molecuar 

orbital. 
– All axial ligands give similar results except the 2,4 dimethyl 

imidazole, in which there seem to be mixed orbitals 
• These results are in accord with the spin density 

calculations 



Catalyst geometry 

• The geometry of the 
catalyst changes with 
substitution 

• The Co(salen) with no 
ligands is quite planar, 
while the addition of 
the axial ligand and 
oxygen distorts the 
structure out of 
planarity 
 

 



Catalyst Geometry 
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Electronic Results 
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Geometric-Electronic Relationships 

• These were done to 
evaluate changes in 
electronics as a function 
of geometry 



Co charge as a function of Co-N bond length 
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Spin density at oxygen as a function of ligand angle 
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Terminal oxygen spin density as a function of Co-
axial ligand bond length 

R² = 0.9744 
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Spin density on terminal oxygen as a function of Co charge 

R² = 0.9334 
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Geometry/electronics vs Yield 
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DMBQ yield as a function of molecular properties 
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Salen ligand angle 
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spin density on terminal oxygen 
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What have we learned? 
• Our results are consistent with the literature in 

terms of orbital occupancy and ordering 
• Axial substitution markedly changes the 

geometry of the salen ligand 
– Geometry also changes with ligand 

• There are good relationships between geometry 
and electronics 

• The relationships between geometry, electronics, 
energetics and yield are not as good 

• This may mean that yield is controlled by more 
than one factor 
 



Pyrolysis Reactions 



Introduction 
Experimental Work on mechanisms 

• Klein and Virk.  1983.  Model pathways in lignin 
thermolysis.  1.  Phenethyl phenyl ether.  Ind. Eng. Chem. 
Fundam.  22:33-45 

• Brežny et al.  1983, 1984.  Low temperature thermolysis of 
lignins.  I and II.  Holzforschung 37:199-204, 38:19-24. 

• Evans et al.  1986.  Direct mass spectrometric studies on 
the pyrolysis of carbonaceous fuels.  III.  Primary pyrolysis 
of lignin.  J.  Anal. Appl. Pyrolysis 9:207-236.  

• Britt and co-workers 
– 2000.  Flash vacuum pyrolysis of methoxy-substituted lignin 

model compounds.  J. Org. Chem. 65:1376-1389 
– 2007.  Oxygen substituent effects in the pyrolysis of phenethyl 

phenyl ethers.  Energy and Fuels 21:3102-3108 
 



Introduction 
Computational Work 

• Beste, A., Buchanan, A.C. III (2009) Computational study of bond 
dissociation enthalpies for lignin model compounds. Substituent 
effect in phenyethyl phenyl ethers. J. Org. Chem. 74:2837–2841. 

• Beste, A., Buchanan, A.C. III (2011)  Computational study of bond 
dissociation enthalpies for substituted  β-O-4 lignin model 
compounds.  ChemPhysChem 12:3556-3565 

• Younker, J.M., Beste, A., Buchanan, A.C. III.  (2012) 
Computational study of bond dissociation enthalpies for lignin 
model compounds: β-5 arylcoumaran.  Chem. Phys. Lett.  
545:100-106 

• Wang, H., Zhao, Y., Wang, C., Fu, Y., Guo, Q. (2009) Theoretical 
study on the pyrolysis process of lignin dimer model compounds.  
Acta Chimi. Sin. 67:893–900. 



Introduction 
Computational Work 

• Beste, A., Buchanan, A.C. 
III (2009) Computational 
study of bond dissociation 
enthalpies for lignin 
model compounds. 
Substituent effect in 
phenyethyl phenyl ethers. 
J. Org. Chem. 74:2837–
2841. 
– M06-2X/mixed basis set 

• 6-31G(d), all atoms 
• 6-311++G(d,p) , atoms with 

upaired electron 
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Methods 
• Based on the results of Beste and Buchanan (2009) on 

phenethyl phenyl ethers, the bond dissociation enthalpy 
of dilignols was evaluated 
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Methods-Computational Methods 
• Composite methods for accurate thermochemistry 
• G3MP2   

– Curtiss et al.  1999.  J. Chem. Phys. 110:4703-4709. 
• Optimizations at HF/6-31G(d) and MP2/6-31G(d) 
• Single point MP2/G3large, MP4/6-31G(d), QCISD(T)/6-31G(d) 

• CBS-4m  
– Montgomery et al. 2000.  J. Chem. Phys. 112:6532–6542. 

• Optimization and frequency HF/3-21G(d) 
• Single point MP4/6-31G, MP2/6-31+G(d,p), HF/CBSB1 

• Gaussian09 
• SGI Altix Cluster-Alabama Supercomputer Authority 



Calibration 

• Results for anisole and ppe from the literature 
were compared with G3MP2 and CBS-4m 
– Energetics were consistent 
– Considerable time advantage with CBS-4m 



Results 
CBS-4m 
bond dissociation  
enthalpy OH
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compound temperature β-O α-β 

guaiacyl 298 K 72.3 81.1 

guaiacyl 
M06-2x/6-311++g(d,p)  

298K 70.0 81.0 

syringyl 298 K 73.7 79.2 

p-coumaryl 298  K 73.6 75.3 

p-coumaryl 800 K 73.6 74.6 

p-coumaryl 
(B3LYP/6-31G(d) 

800 K  
(Wang et al. 
2009) 

54.5 57.6 

The differences between 
Β-O and  α-β are smaller 
than for the PPEs, perhaps 
indicating less selectivity. 



What Have We Learned? 

• Compound methods (at least some of them) 
are feasible for models of reasonable size 

• Compound methods are fairly consistent with 
respect to results 

• The difference in BDE between β-O and α-β 
cleavage mechanisms is lower for dilignols 
than for PPE models 
– This may mean the reactions are less selective 

 



BDEs of 
dibenzodioxocin 

• Dibenzodioxocin structures 
recently discovered by 
Brunow and co-workers 

• BDEs within the group 
• Conformational analysis of 

open ring structures 
– 500 iteration MC search with 

PM3 optimization 
• M06-2X/6-31+G(d), ultrafine grid, 

optimizations on lowest 10 
conformers 

• M06-2X/6-311++G(d,p) single 
point, frequency, ultrafine grid, 
on lowest energy conformer 
 

 



Coming attractions (?) 

• Interactions of ionic liquids with cell wall 
constituents 
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(Grabber et al. Biomacromolecules 9:2510) 



Questions 
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