Biobased Surfactants: A Useful Biorefinery Product That Can Be Prepared Using Green Manufacturing

Douglas G. Hayes

Dept Biosystems Engineering & Soil Science
Univ. Tennessee, Knoxville, TN 37996 USA
dhayes1@utk.edu

Outline

- Overview of Biobased Surfactants (a viable biorefinery commodity)
- 2. Perspectives for enzymatic preparation of biobased surfactants
- 3. Overview: Lipase-catalyzed synthesis of sugar esters

Frontiers in Biorefining, St Simon's Island, GA, 10/31/12

Biobased Surfactants: An Economic Perspective

- Surfactants and Detergents: \$24.3 Billion / 14 MMT (2012)
 - Household detergents: ~42%, Industrial surfactants: ~29 %, Personal Care: ~16%,
 Pharmaceuticals: ~7%
 - Market share between regions: 30.5% = Europe, 28.5% = North America, 26.3% = Asia/ Pacific
- Biobased Surfactants: \$4.86 Billion / 3.5 MMT (2012)
 - ~25% of Surfactants and Detergents market
- Market share between regions: 46% = Europe, 28% = North America, 18% = Asia / Pacific
- Prediction for 2017
 - Asia / Pacific will be largest regional consumer of surfactants and detergents
- Biobased Surfactants will account for 27.8% of overall market, with the greatest region of growth being Asia / Pacific
- (courtesy: MarketsandMarkets, Pune (India)

Motivation for biobased

surfactants

- Synthetic feedstock price surging (\$140/bbl for crude oil)
- Production costs (and biodegradability) for biobased ≈ petroleum-based
 (US DOE, Technology Roadmap for Plant / Crop-Based Renewable Resources 2020)
- Consumer (and seller) demand for eco-friendly and sustainable products
- Biodiesel → more abundant feedstock supply (fits "biorefinery" model)
- Reduced greenhouse gas (e.g., CO₂) production using biobased feedstocks (a more environmentallly-sustainable beginning-of-life)

Biobased Surfactants: Eco-Friendlier?

- Reduced greenhouse gas (e.g., CO_2) production during manufacture (\uparrow BB feedstock by 24% \rightarrow \downarrow CO_2 by 8%)
- Replacement of alkylphenyl ethoxylates, APEs, phosphate builders, solvents (more environmentally sustainable end-of-life)
- Increased acreage of palm oil, e.g. →
 - Loss of biodiversity
 - Loss of animal habitat
 - Deforestation
 - Roundtable for Sustainable Palm Oil
- Chemically derivatized biobased surfactants similar to synthetics in terms of biodegradability

Biobased Surfactants and the Biorefinery

Frontiers in Biorefining, St Simon's Island, GA, 10/31/12

Barriers to Biobased Surfactants

- Increasing prices of oleochemical feedstocks
- Reliability of oleochemical feedstocks
- Price fluctuations of oleochemical feedstocks
- Need for uniform world-wide biobased and eco-friendly labeling
- Need for a domestic oleochemical feedstock suitable for S+D

New Trends for Biobased Surfactants

- Increased use of biobased building blocks for hydrophile
- New and improved biosurfactants: new organisms, genetic modification
- Increased use of low-cost feedstocks: glycerin, used cooking oil, municipal waste, lignin
- Increased development of new biobased surfactants for drug delivery
- Green Manufacturing: Use of enzymes as catalysts

Fatty Acyl Feedstocks for Biobased Surfactants

- Ideal for food and pharmaceutical use: oleyl (18:1)
- Ideal for industrial use: C₁₂-C₁₆, no double bonds
 - Palm Kernal Oil (48% 12:0, 18% 14:0, 8% 16:0)
 - Palm Stearine (54% 16:0, 5% 18:0, 1% 14:0. 33% 18:1, 7% 18:2
 - Coconut (48% 12:0, 16% 14:0, 8% 16:0)
 - Cuphea (enriched in 8:0 14:0)
 - Common Seed Oils (18:1-rich; significant 16:0+18:0 content)
 - Tallow (23-27% 16:0, 15-23% 18:0, 3-4% 14:0, 36-43% 18:1)
 - Jatropha (14.7% 16:0, 6.9% 18:0; 42.4% 18:1 35.2% 18:2)
 - Soapnut (4.7% 16:0; 1.5% 18:0, 7.0% 20:0, 52.6% 18:1, 23.9% 20:1)
 - Algal oils (42% 16:0, 5% 18:0, 26.0 18:1, 14% 18:2)
 - Hydroxy fatty acids: castor (lesquerella, dimorphotheca)
 - Epoxy fatty acids: vernonia, epoxidized soybean

Biocatalytic Synthesis of Biobased Surfactants: Advantages

- Lower energy use (lower temperature, ambient pressure) → reduced CO₂
- Lower amounts of waste products and by-products
- Lower amounts of reactants (near-stoichiometric ratios; no excess reactants)
- Absence of toxic metal catalysts or acids /bases → improved safety
- Can result in lower solvent usage
 - − → Enhanced performance as per Life Cycle Assessment
- Product distribution more narrow (regioselectivity, stereoselectivity)

Enzymes Useful for Surfactant Synthesis

Enzyme	Surfactant or precursor
Alcohol dehydrogenase	Aldehyde or ketone (from fatty alcohol)
lpha-Amylase	Alkyl polyglucosides
Glucosidase	Alkyl glucosides
Glucosyl transferases	Alkyl polyglucosides
Lipases	Fatty acid esters (polyol, polyglycerol), fatty amide- based, lysophospholipids, carbonates, amino acid-based
Papain	Amino acid surfactants
Phospholipases	Tailor-made phospholipids

Lipase-catalyzed synthesis of di-O-alkyl, O-(N $^{\alpha}$ -acetyl-L-argininyl) glycerol

Saccharide-Fatty Acid Esters via Lipase (Dr. Ran Ye, PhD Dissertation)

Sucrose

Sucrose 6, 1' dioleate

Issue: Immiscibility of saccharide & fatty acid

Saccharide-Fatty Acid Esters: Applications

 Biodegradable emulsifiers for use in foods, cosmetics, and pharmaceuticals

 Possible anti-tumor activity, antimicrobial and insecticidal activity

Suspension / Supersaturated Solution-Based Bioreactor System

Immobilized *Rhizomucor miehei* lipase (Lipozyme-IM, Novozymes, Inc.)

Solvent-Free Suspensions: Preparation

•<u>Stirring</u>: 80°C, 800 rpm, 6 hr

<u>Centrifugation</u>: 800 rpm,30 s

•<u>Usage</u>: at specified intervals, system stopped; suspension remade

Pump Molec Reser-Sieve **PBBR** voir Col-(65°C) 53°C um

Ye, and Hayes, JAOCS 88 (9):1351-1359 (2011)

Optimization of Bioreactor System (Fructose Oleate Synthesis)

- Dashed arrow → optimized interval time
- Solid arrow →introduction time for water removal approach (offline, enacted during re-formation of suspensions)
- N₂ (g) bubbling + Vacuum
- Water content ~0.4% w/w is optimal; addition at 60% ester is optimal
- ~ 92 % (0.297 mmol _{Ester} h⁻¹ g_{RML}⁻¹)
 in 117h

Ye, and Hayes, JAOCS 88 (9):1351-1359 (2011)

Excellent Enzyme Activity Retention

- No significant changes in the time course of reaction ..
- .. For 4 successive runs using the same lipase preparation

Ye, and Hayes, JAOCS 89 (3) 455-463 (2012)

Criteria for Sucrose Esters

- < 2% sulfated ash
- Specific requirements for solvents (DMF, DMSO, methanol, MEK, etc.
- Acid value < 6 (~3 wt% FFA)
- < 5% free sucrose</p>
- (FAO JECFA Monographs 4, 2007)

Additional Esterification to Increase the Yield (Fructose and Sucrose Oleate)

Starting materials

- Reaction product from solvent-free biocatalysis
- Smaller size of sugar crystals (Homogenizer, 12,000 rpm, 1 min)
 - → Centrifugation at 800 rpm for 1 min
- Fructose: 387 nm, Sucrose: 562 nm (~20-40 μm after same treatment, saccharides "as received")

Reaction conditions:

- Closed, stirred batch, system
- CaSO₄-controlled (ultralow water activity; Dang et al., *JAOCS*, 2005
 82: 487-493)
- Immobilized Candida antarctica lipase (10 wt%; Novozym 435, Novozymes, Inc, Franklinton, NC USA)
- 65°C, 4 days

Results: Further Esterification

Physical Properties

Property	Fructose Ester	Sucrose Ester
FFA	3.4 %	10.0 %
Saccharide	0.63 %	0.86 %
Moisture	0.11 %	0.13 %
Ester Profile	69% Mono, 31% Di	65% Mono, 35% Di
HLB (Griffin)	7.2	10.1
Melting Point, °C	-12.8 to -17.2	-14.5 to -18.3

Summary

- 1. Enzymes are potentially valuable for the sustainable preparation of biobased surfactants
 - a. Polyol esters (lipases)
 - b. Amino acid surfactant (lipases, papain)
 - c. Alkyl glucosides (glucosidase, CGTase)
- 2. Solvent-free enzymic synthesis of saccharide fatty acid esters nearly reaches standardized specifications without the need for purification.

Acknowledgement

- The US Department of Agriculture, AFRI Grant 2006-35504-17262
- University of Tennessee (UT) Institute of Agriculture
- •Drs. S. Zivanovic (light scattering facilities), F. Harte (high-speed homogenation), Food Sci & Technol, UT