Biological Abatement of Fermentation Inhibitors

Nancy N. Nichols, Badal C. Saha, Bruce S. Dien, Michael A. Cotta

National Center for Agricultural Utilization Research ARS-USDA, Peoria, IL

Biomass to ethanol

Cellulose Hemicellulose

Hexoses Pentoses Inhibitors

Ethanol Recombinant Yeast or Bacteria

Inhibitor abatement

- Inexpensive
- Easy to integrate
- Selective removal of inhibitors
- Dilution
 Vacuum evaporation pH adjustment
 Polymeric adsorption

Microbes enriched from contaminated soil

Identification of isolates

- A3, A6, B1-1: Pseudomonas sp.
- A1: Methylobacterium extorquens
- A5: Arthrobacter aurescens
- B1-1: Acinetobacter sp.
- C6: Flavobacterium indologenes
- C7: Stenotrophomonas maltophylia
- C8: Ascomycete fungus

Removal of furans from corn stover hydrolysate

Coniochaeta ligniaria C8 (NRRL30616)

Comparison of Coniochaeta strains

Organism	NRRL	Other ID	Furfural	5-HMF	Levulinic Acid	<i>p</i> -Hydroxy- benzaldehyde
Coniochaeta ligniaria	30616	C8	0.605	0.090	0.006	0.081
Lecythophora hoffmannii	31961	DSM2693	0.560	0.148	0	0.086
Lecythophora mutabilis	31962	DSM10716			n.d.	
Lecythophora lignicola	31963	DSM63551			n.d.	
Coniochaeta ligniaria	32068	95.605	0.278	0.023	0.308	
Coniochaeta ligniaria	32069	98.1105	0.577	0.166	0.145	0.063
Coniochaeta ligniaria	32070	98.1126	0.640	0.101	0.073	0.196
Coniochaeta ligniaria	32071	F3331	0.005	0.104	n.d.	0.136
Coniochaeta ligniaria	32072	F3343	0.723	0.214	0.148	0.073
Phialophora decumbens	32073	CBS153.42			n.d.	
Phialophora fasciculatus	32074	CBS205.38			n.d.	
Lecvthophora hoffmannii	32075	CBS245.38			n.d.	
Lecythophora hoffmannii	32076	CBS140.41			n.d.	0.053
Lecythophora lignicola	32077	CBS267.33			n.d.	
Phialophora luteoviridis	32079	CBS206.38			n.d.	
Lecythophora mutabilis	32080	CBS157.44			n.d.	
Lecythophora mutabilis	32081	CBS303.62			n.d.	0.09
Coniochaeta ligniaria	32082	CBS620.69			n.d.	
Coniochaeta ligniaria	32083	CBS178.75	0.186	0.071	0.088	4
Coniochaeta malacotricha	32084	CBS323.72			n.d.	

Comparison of *Coniochaeta* strains

Alignment of the large ribosomal subunit (D1D2 domain) of the strains in Table 1 by the ClustalW method (Adapted from Weber et al (2002)). Strains that were the best at removing furfural from corn stover hydrolysate are highlighted.

Fermentation of xylose in corn stover

Switchgrass

60

80

Untreated corn stover hydrolysate

C8-treated corn stover hydrolysate

New peak is furfuryl alcohol

Furan metabolic pathway

Time course of furfural & HMF metabolism

Untreated corn stover hydrolysate

Metabolism of furfural before glucose

Coniochaeta ligniaria genome

13chromosomes (0.5-5.0 Mb) Estimated total size 30.1 Mb

2: $(TTAGGG)_6$

Characterizing C. ligniaria

- G + C content 49.2% (coding regions 51.9%)
- No unusual codons
- Haploid
- UV mutagenesis
- Transformation by protoplasting
- Antibiotic resistance: hygromycin, G418, benomyl

Wheat straw--bioabatement

Summary

- A biological approach to inhibitor abatement
- Best isolate: Ascomycete *Coniochaeta ligniaria* C8
- Consumes furfural and HMF from hydrolyzed corn stover; also phenolics and organic acids
- Enhanced fermentation of biomass feedstocks: crop residues & energy crops

Nancy Ho