Differential heliothine susceptibility to Cry1Ac associated with gut proteolytic activity
Abdelgaffar, H., C. Oppert, X. Sun, J. Monserrate, and J. L. Jurat-Fuentes.  2018.  Pesticide Biochemsitry and Physiology.

The Cry1Ac protein is the most active insecticidal toxin from the bacterium Bacillus thuringiensis (Bt) to members of the heliothinae subfamily in Lepidoptera, which includes some of the most devastating pests of corn and cotton worldwide. However, there are wide discrepancies in susceptibility among members of this subfamily in the US. Specifically, susceptibility to Cry1Ac in Helicoverpa zea (Hz) is >100-fold lower when compared to Heliothis virescens (Hv) larvae. The biochemical properties and Cry1Ac protoxin processing activity of gut digestive fluids from larvae of Hz and Hv were compared to test their role in differential susceptibility to Cry1Ac. Comparatively lower protease activity, associated with slower Cry1Ac proteolytic processing, was detected in digestive fluids of Hz compared to Hv. Moreover, Cry1Ac toxin processed by Hz digestive fluids displayed significantly lower toxicity in vitro against cultured insect cells compared to toxin activated by Hv proteases. These data support a contributing role for gut proteases in differential susceptibility to Cry1Ac in heliothine larvae.