Interactions of Lumbricus terrestris with polyethylene and biodegradable plastic mulch in soil,
Zhang, L., H. Y., Sintim, A. Bary, D. G. Hayes, L. C. Wadsworth, M. Anunciado, and M. Flury.  2018.  Sciuence of the Total Environment, 635 (1): 1600-1608.

Abstract:
Polyethylene mulch films used in agriculture are a major source of plastic pollution in soils. Biodegradable plastics have been introduced as alternative to commonly-used polyethylene. Here we studied the interaction of earthworms (Lumbricus terrestris) with polyethylene and biodegradable plastic mulches. The objective was to assess whether earthworms would select between different types of mulches when foraging for food, and whether they drag macroscopic plastic mulch into the soil. Laboratory experiments were carried out with earthworms in Petri dishes and mesocosms. The treatments were standard polyethylene mulch, four biodegradable plastic mulches (PLA/PHA [polylactic acid/polyhydroxy alkanoate], Organix, BioAgri, Naturecycle), a biodegradable paper mulch (WeedGuardPlus), and poplar litter, which served as control. Four and three replicates for the Petri dish and mesocosm experiments were used, respectively. Macroscopic plastic and paper mulch pieces (1.5 cm  1.5 cm and 2 cm  2 cm) were collected from an agricultural field after a growing season, after being buried in the soil for 6 and 12 months, and after being composted for 2 weeks. We found that earthworms did not ingest polyethylene. Field-weathered biodegradable plastic mulches were not ingested either, however, after soil burial and composting, some biodegradable plastics were eaten and could not be recovered from soil any longer. Earthworms, when foraging for food, dragged plastic mulch, including polyethylene and biodegradable plastic, and poplar leaves into their burrows. The burial of macroscopic plastic mulch underground led to a redistribution of plastics in the soil profile, and likely enhances the degradation of biodegradable mulches in soil, but also can lead to leaching of plastic fragments by macropore flow.